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FOFtEWORD 

This document is one of sixteen sections that compricse the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract NASw- 563. 
The report is issued in the following sixteen sections to facilitate 
updating as progress warrants: 

s-ry / 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Fnrrm_!ln_tinr? nf EL Rn12nrled PhBSP Coordir?ate Centrcl 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

SCudte Determination for a Flexible Vehicle Without a Mode 
Shape Re qu i r eme nt 

An Application of the Quadratic Penalty Function 
to the Determination of a Linear Control for a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Minimum 
Principle 

A Minimax Control for a Plant Subjected to a Known Load Disturbance 

Criterion 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
and objectively discusses the significance of the results obtained. The 
results of inconclusive and/or unsuccessful investigations are presented. 
Linear progrming is reviewed in detail adequate for sections 6 ,  8, and 16. 

It is shown in section 2 that the purely formal procedure for synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of the control variable yields a correct result. 
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n]>\ of the state vector fo r  an n-th c?rc?er linear cmstant  caeffizier;t 
plant, to zero in finite time can be refomlated as a problem of controlling 
a single component. 

- 

Section 4 shows Pontriagifls Maximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for computing the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate Froblem into a standard c a L c i ~ l . 1 ~ ~  nf Varjn_t.ignc prghl.pme 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I 2  presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty f’unction criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a ’certain type of invariance to 
disturbances. Conditions for obtaining such invariance are derived using 
the concept of complete controllability. 
obtained as a specific example. 

The drift minimum condition is 

In section 16 linear programing is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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A CONCISE FORMULATION OF 

A BOUNDED PHASE COORDINATE CONTROL PROBLEM 

AS A PROBLEM IN THE CALCULUS OF VARIATIONS* 
By W. Schmaedeke'and D. Russell * 

ABSTRACT 

A short calculation is presented which transforms a bounded 

phase coordinate control problem for a linear time varying 

system into a problem in the calculus of variations. 
h d r  Q O R  

THE CALCULATION 

The linear system is given by 

2 = A(t)x + B(t)u + c(t) 
where A(t) is an nxn matrix, B(t) is an nxr matrix, c(t) is 

an n-vector, x is an n-vector and u is an m-vector. The 

constraints on the amplitude of the control vector are given by 

and the constraints on the phase variables are given by 

vr(t)*x(t) br(t) r = l,...,R (33 
where vr(t) are given bounded, vector functions of time and 

br(t) are given bounded scalar functions defined on an interval 

I; ali(t), aZi(t) are bounded and also defined on I. 

coefficients A(t), B(t) and c are assumed to have elements 

The 

which are bounded and continuous on the interval I. 

* Prepared under contract NASw-563 f o r  the NASA 
........................ 

+ Sr. Research Scientist, Minneapolis-Honeywell Regulator CO. 

* Research Consultant Minneapolis, Minnesota 



It can be shown tha t  the problem of t r ans fe r r ing  a 

t r a j ec to ry  from an i n i t i a l  point a t  time t = 0 t o  the  o r ig in  i n  

a minimum t i m e  T can be phrased a s  t h e  problem of choosing u ( t )  

from some given admissible se t  s2 of cont ro ls  ( n C R m )  i n  such a 

way tha t  the quant i ty  
T 

J @ / ' ( t ) B ( t )  u ( t ) d t  ( 4 )  
0 

is maximized subject  t o  the cons t ra in ts  given by ( 2 )  and (3)  wi th  

q ( t )  a so lu t ion  t o  the adjoint  equations corresponding t o  (1). 

The va r i a t ion  of parameters formula f o r  a so lu t ion  x ( t )  o f  

(1) i s  

(5)  -1 x ( t )  = W ( t )  x0 + W ( t )  J W ( s )B(s )u ( s )ds  
0 

where W ( t )  i s  a fundamental so lu t ion  matrix t o  the  homogeneous 

p a r t  of (1). ~y s u b s t i t u t i n g  (5)  i n t o  ( 3 )  

t 
* X  = v,*W(t) x0 + v;W(t) J W-l(s)B(s)u(S)ds 5 b , ( t )  

0 

o r  s ince v;W(t)xo i s  some sca la r  funct ion of time, 
L 
I, 

v,(t)*W(t) W-l(s)B(s)u(S)ds (%r(t)  
0 

where vr ( t )*W(t )xo  has been absorbed i n  the s c a l a r  funct ion 

I = W ( s ) W - ' ( s )  I s  introduced i n t o  equation 4 alg follows: 

t 
( s ) W (  s)W'l( s)B( s ) u (  s)ds. 

0 

It i s  observed t h a t  @l(s)W(s)  i s  a constant vector  which i s  

(7)  

denoted by K, and hence the problem now is  t o  maximize the quant i ty  
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subject to the constraints 

v,(t)*W(t)/ W -1 (S)B(S)u(S)dS < Sr(t) - 
0 

( 9 )  

Remark: This can be posed in terms of maximizing the projection 

of a certain vector onto the adjoint vector at the final time T 

by noting K may be replaced by J/(T)W(T) in (8) to obtain 

T 
+(T) -/ W(T)W-l(s)B(s)u(s)ds 

0 

while ( 9 )  becomes 

These equations are of the form: 

T 
maximize q(T)*/ F(s)u(s)ds 

0 

subject to the constraints 

and it is this final succinct form which the bounded phase 

problem takes. 


